3.666 \(\int \frac{1}{\sqrt{\sec (c+d x)} (a+b \sec (c+d x))^{5/2}} \, dx\)

Optimal. Leaf size=317 \[ -\frac{2 b \left (9 a^2-8 b^2\right ) \sqrt{\sec (c+d x)} \sqrt{\frac{a \cos (c+d x)+b}{a+b}} \text{EllipticF}\left (\frac{1}{2} (c+d x),\frac{2 a}{a+b}\right )}{3 a^3 d \left (a^2-b^2\right ) \sqrt{a+b \sec (c+d x)}}+\frac{8 b^2 \left (2 a^2-b^2\right ) \sin (c+d x) \sqrt{\sec (c+d x)}}{3 a^2 d \left (a^2-b^2\right )^2 \sqrt{a+b \sec (c+d x)}}+\frac{2 b^2 \sin (c+d x) \sqrt{\sec (c+d x)}}{3 a d \left (a^2-b^2\right ) (a+b \sec (c+d x))^{3/2}}+\frac{2 \left (-15 a^2 b^2+3 a^4+8 b^4\right ) \sqrt{a+b \sec (c+d x)} E\left (\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right )}{3 a^3 d \left (a^2-b^2\right )^2 \sqrt{\sec (c+d x)} \sqrt{\frac{a \cos (c+d x)+b}{a+b}}} \]

[Out]

(-2*b*(9*a^2 - 8*b^2)*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*a)/(a + b)]*Sqrt[Sec[c + d*
x]])/(3*a^3*(a^2 - b^2)*d*Sqrt[a + b*Sec[c + d*x]]) + (2*(3*a^4 - 15*a^2*b^2 + 8*b^4)*EllipticE[(c + d*x)/2, (
2*a)/(a + b)]*Sqrt[a + b*Sec[c + d*x]])/(3*a^3*(a^2 - b^2)^2*d*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*Sqrt[Sec[c +
 d*x]]) + (2*b^2*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(3*a*(a^2 - b^2)*d*(a + b*Sec[c + d*x])^(3/2)) + (8*b^2*(2*a
^2 - b^2)*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(3*a^2*(a^2 - b^2)^2*d*Sqrt[a + b*Sec[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.734148, antiderivative size = 317, normalized size of antiderivative = 1., number of steps used = 9, number of rules used = 9, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.36, Rules used = {3847, 4100, 4035, 3856, 2655, 2653, 3858, 2663, 2661} \[ \frac{8 b^2 \left (2 a^2-b^2\right ) \sin (c+d x) \sqrt{\sec (c+d x)}}{3 a^2 d \left (a^2-b^2\right )^2 \sqrt{a+b \sec (c+d x)}}+\frac{2 b^2 \sin (c+d x) \sqrt{\sec (c+d x)}}{3 a d \left (a^2-b^2\right ) (a+b \sec (c+d x))^{3/2}}-\frac{2 b \left (9 a^2-8 b^2\right ) \sqrt{\sec (c+d x)} \sqrt{\frac{a \cos (c+d x)+b}{a+b}} F\left (\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right )}{3 a^3 d \left (a^2-b^2\right ) \sqrt{a+b \sec (c+d x)}}+\frac{2 \left (-15 a^2 b^2+3 a^4+8 b^4\right ) \sqrt{a+b \sec (c+d x)} E\left (\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right )}{3 a^3 d \left (a^2-b^2\right )^2 \sqrt{\sec (c+d x)} \sqrt{\frac{a \cos (c+d x)+b}{a+b}}} \]

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[Sec[c + d*x]]*(a + b*Sec[c + d*x])^(5/2)),x]

[Out]

(-2*b*(9*a^2 - 8*b^2)*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*a)/(a + b)]*Sqrt[Sec[c + d*
x]])/(3*a^3*(a^2 - b^2)*d*Sqrt[a + b*Sec[c + d*x]]) + (2*(3*a^4 - 15*a^2*b^2 + 8*b^4)*EllipticE[(c + d*x)/2, (
2*a)/(a + b)]*Sqrt[a + b*Sec[c + d*x]])/(3*a^3*(a^2 - b^2)^2*d*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*Sqrt[Sec[c +
 d*x]]) + (2*b^2*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(3*a*(a^2 - b^2)*d*(a + b*Sec[c + d*x])^(3/2)) + (8*b^2*(2*a
^2 - b^2)*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(3*a^2*(a^2 - b^2)^2*d*Sqrt[a + b*Sec[c + d*x]])

Rule 3847

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(b^2*C
ot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n)/(a*f*(m + 1)*(a^2 - b^2)), x] + Dist[1/(a*(m + 1)
*(a^2 - b^2)), Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n*(a^2*(m + 1) - b^2*(m + n + 1) - a*b*(m + 1
)*Csc[e + f*x] + b^2*(m + n + 2)*Csc[e + f*x]^2), x], x] /; FreeQ[{a, b, d, e, f, n}, x] && NeQ[a^2 - b^2, 0]
&& LtQ[m, -1] && IntegersQ[2*m, 2*n]

Rule 4100

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[((A*b^2 - a*b*B + a^2*C)*Cot[e + f*x]*(a +
 b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n)/(a*f*(m + 1)*(a^2 - b^2)), x] + Dist[1/(a*(m + 1)*(a^2 - b^2)), I
nt[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n*Simp[a*(a*A - b*B + a*C)*(m + 1) - (A*b^2 - a*b*B + a^2*C)*
(m + n + 1) - a*(A*b - a*B + b*C)*(m + 1)*Csc[e + f*x] + (A*b^2 - a*b*B + a^2*C)*(m + n + 2)*Csc[e + f*x]^2, x
], x], x] /; FreeQ[{a, b, d, e, f, A, B, C, n}, x] && NeQ[a^2 - b^2, 0] && LtQ[m, -1] &&  !(ILtQ[m + 1/2, 0] &
& ILtQ[n, 0])

Rule 4035

Int[(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(
b_.) + (a_)]), x_Symbol] :> Dist[A/a, Int[Sqrt[a + b*Csc[e + f*x]]/Sqrt[d*Csc[e + f*x]], x], x] - Dist[(A*b -
a*B)/(a*d), Int[Sqrt[d*Csc[e + f*x]]/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && Ne
Q[A*b - a*B, 0] && NeQ[a^2 - b^2, 0]

Rule 3856

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)], x_Symbol] :> Dist[Sqrt[a +
 b*Csc[e + f*x]]/(Sqrt[d*Csc[e + f*x]]*Sqrt[b + a*Sin[e + f*x]]), Int[Sqrt[b + a*Sin[e + f*x]], x], x] /; Free
Q[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 2655

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2653

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*Sqrt[a + b]*EllipticE[(1*(c - Pi/2 + d*x)
)/2, (2*b)/(a + b)])/d, x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 3858

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[(Sqrt[d*
Csc[e + f*x]]*Sqrt[b + a*Sin[e + f*x]])/Sqrt[a + b*Csc[e + f*x]], Int[1/Sqrt[b + a*Sin[e + f*x]], x], x] /; Fr
eeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 2663

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 2661

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, (2*b)
/(a + b)])/(d*Sqrt[a + b]), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rubi steps

\begin{align*} \int \frac{1}{\sqrt{\sec (c+d x)} (a+b \sec (c+d x))^{5/2}} \, dx &=\frac{2 b^2 \sqrt{\sec (c+d x)} \sin (c+d x)}{3 a \left (a^2-b^2\right ) d (a+b \sec (c+d x))^{3/2}}-\frac{2 \int \frac{-\frac{3 a^2}{2}+2 b^2+\frac{3}{2} a b \sec (c+d x)-b^2 \sec ^2(c+d x)}{\sqrt{\sec (c+d x)} (a+b \sec (c+d x))^{3/2}} \, dx}{3 a \left (a^2-b^2\right )}\\ &=\frac{2 b^2 \sqrt{\sec (c+d x)} \sin (c+d x)}{3 a \left (a^2-b^2\right ) d (a+b \sec (c+d x))^{3/2}}+\frac{8 b^2 \left (2 a^2-b^2\right ) \sqrt{\sec (c+d x)} \sin (c+d x)}{3 a^2 \left (a^2-b^2\right )^2 d \sqrt{a+b \sec (c+d x)}}+\frac{4 \int \frac{\frac{1}{4} \left (3 a^4-15 a^2 b^2+8 b^4\right )-\frac{1}{2} a b \left (3 a^2-b^2\right ) \sec (c+d x)}{\sqrt{\sec (c+d x)} \sqrt{a+b \sec (c+d x)}} \, dx}{3 a^2 \left (a^2-b^2\right )^2}\\ &=\frac{2 b^2 \sqrt{\sec (c+d x)} \sin (c+d x)}{3 a \left (a^2-b^2\right ) d (a+b \sec (c+d x))^{3/2}}+\frac{8 b^2 \left (2 a^2-b^2\right ) \sqrt{\sec (c+d x)} \sin (c+d x)}{3 a^2 \left (a^2-b^2\right )^2 d \sqrt{a+b \sec (c+d x)}}-\frac{\left (b \left (9 a^2-8 b^2\right )\right ) \int \frac{\sqrt{\sec (c+d x)}}{\sqrt{a+b \sec (c+d x)}} \, dx}{3 a^3 \left (a^2-b^2\right )}+\frac{\left (3 a^4-15 a^2 b^2+8 b^4\right ) \int \frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{\sec (c+d x)}} \, dx}{3 a^3 \left (a^2-b^2\right )^2}\\ &=\frac{2 b^2 \sqrt{\sec (c+d x)} \sin (c+d x)}{3 a \left (a^2-b^2\right ) d (a+b \sec (c+d x))^{3/2}}+\frac{8 b^2 \left (2 a^2-b^2\right ) \sqrt{\sec (c+d x)} \sin (c+d x)}{3 a^2 \left (a^2-b^2\right )^2 d \sqrt{a+b \sec (c+d x)}}-\frac{\left (b \left (9 a^2-8 b^2\right ) \sqrt{b+a \cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{1}{\sqrt{b+a \cos (c+d x)}} \, dx}{3 a^3 \left (a^2-b^2\right ) \sqrt{a+b \sec (c+d x)}}+\frac{\left (\left (3 a^4-15 a^2 b^2+8 b^4\right ) \sqrt{a+b \sec (c+d x)}\right ) \int \sqrt{b+a \cos (c+d x)} \, dx}{3 a^3 \left (a^2-b^2\right )^2 \sqrt{b+a \cos (c+d x)} \sqrt{\sec (c+d x)}}\\ &=\frac{2 b^2 \sqrt{\sec (c+d x)} \sin (c+d x)}{3 a \left (a^2-b^2\right ) d (a+b \sec (c+d x))^{3/2}}+\frac{8 b^2 \left (2 a^2-b^2\right ) \sqrt{\sec (c+d x)} \sin (c+d x)}{3 a^2 \left (a^2-b^2\right )^2 d \sqrt{a+b \sec (c+d x)}}-\frac{\left (b \left (9 a^2-8 b^2\right ) \sqrt{\frac{b+a \cos (c+d x)}{a+b}} \sqrt{\sec (c+d x)}\right ) \int \frac{1}{\sqrt{\frac{b}{a+b}+\frac{a \cos (c+d x)}{a+b}}} \, dx}{3 a^3 \left (a^2-b^2\right ) \sqrt{a+b \sec (c+d x)}}+\frac{\left (\left (3 a^4-15 a^2 b^2+8 b^4\right ) \sqrt{a+b \sec (c+d x)}\right ) \int \sqrt{\frac{b}{a+b}+\frac{a \cos (c+d x)}{a+b}} \, dx}{3 a^3 \left (a^2-b^2\right )^2 \sqrt{\frac{b+a \cos (c+d x)}{a+b}} \sqrt{\sec (c+d x)}}\\ &=-\frac{2 b \left (9 a^2-8 b^2\right ) \sqrt{\frac{b+a \cos (c+d x)}{a+b}} F\left (\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right ) \sqrt{\sec (c+d x)}}{3 a^3 \left (a^2-b^2\right ) d \sqrt{a+b \sec (c+d x)}}+\frac{2 \left (3 a^4-15 a^2 b^2+8 b^4\right ) E\left (\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right ) \sqrt{a+b \sec (c+d x)}}{3 a^3 \left (a^2-b^2\right )^2 d \sqrt{\frac{b+a \cos (c+d x)}{a+b}} \sqrt{\sec (c+d x)}}+\frac{2 b^2 \sqrt{\sec (c+d x)} \sin (c+d x)}{3 a \left (a^2-b^2\right ) d (a+b \sec (c+d x))^{3/2}}+\frac{8 b^2 \left (2 a^2-b^2\right ) \sqrt{\sec (c+d x)} \sin (c+d x)}{3 a^2 \left (a^2-b^2\right )^2 d \sqrt{a+b \sec (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 1.25898, size = 208, normalized size = 0.66 \[ \frac{2 \sec ^{\frac{5}{2}}(c+d x) (a \cos (c+d x)+b) \left (\frac{\left (\frac{a \cos (c+d x)+b}{a+b}\right )^{3/2} \left (b \left (9 a^2 b-9 a^3+8 a b^2-8 b^3\right ) \text{EllipticF}\left (\frac{1}{2} (c+d x),\frac{2 a}{a+b}\right )+\left (-15 a^2 b^2+3 a^4+8 b^4\right ) E\left (\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right )\right )}{(a-b)^2}+\frac{a b^2 \sin (c+d x) \left (a \left (9 a^2-5 b^2\right ) \cos (c+d x)+8 a^2 b-4 b^3\right )}{\left (a^2-b^2\right )^2}\right )}{3 a^3 d (a+b \sec (c+d x))^{5/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(Sqrt[Sec[c + d*x]]*(a + b*Sec[c + d*x])^(5/2)),x]

[Out]

(2*(b + a*Cos[c + d*x])*Sec[c + d*x]^(5/2)*((((b + a*Cos[c + d*x])/(a + b))^(3/2)*((3*a^4 - 15*a^2*b^2 + 8*b^4
)*EllipticE[(c + d*x)/2, (2*a)/(a + b)] + b*(-9*a^3 + 9*a^2*b + 8*a*b^2 - 8*b^3)*EllipticF[(c + d*x)/2, (2*a)/
(a + b)]))/(a - b)^2 + (a*b^2*(8*a^2*b - 4*b^3 + a*(9*a^2 - 5*b^2)*Cos[c + d*x])*Sin[c + d*x])/(a^2 - b^2)^2))
/(3*a^3*d*(a + b*Sec[c + d*x])^(5/2))

________________________________________________________________________________________

Maple [B]  time = 0.32, size = 3103, normalized size = 9.8 \begin{align*} \text{output too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/sec(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(5/2),x)

[Out]

-2/3/d/a^3/(a-b)/(a+b)^2/((a-b)/(a+b))^(1/2)*(3*((a-b)/(a+b))^(1/2)*cos(d*x+c)^3*a^5+8*EllipticE((-1+cos(d*x+c
))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*b^5*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1
/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)+3*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1
/2))*a^4*b*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)+8*cos(d*x+c)*si
n(d*x+c)*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+
c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*b^5-3*a^3*b^2*((a-b)/(a+b))^(1/2)-11*a^2*b^3*((a-b)/(a+b))^
(1/2)+4*a*b^4*((a-b)/(a+b))^(1/2)+3*cos(d*x+c)*sin(d*x+c)*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*
x+c),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*a^5-3*cos(
d*x+c)*sin(d*x+c)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*EllipticF((-1+cos(d
*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a^5-15*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/
2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a^2*b^3*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))
^(1/2)*sin(d*x+c)-3*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a^4*b*(1/(a
+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)-9*EllipticF((-1+cos(d*x+c))*((a
-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a^3*b^2*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(
cos(d*x+c)+1))^(1/2)*sin(d*x+c)+6*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2
))*a^2*b^3*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)+8*EllipticF((-1
+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a*b^4*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+
1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)+8*b^5*((a-b)/(a+b))^(1/2)+3*cos(d*x+c)^2*sin(d*x+c)*(1/(a+b)*(b+
a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin
(d*x+c),(-(a+b)/(a-b))^(1/2))*a^5-3*cos(d*x+c)^2*sin(d*x+c)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1
/(cos(d*x+c)+1))^(1/2)*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a^5-3*co
s(d*x+c)^2*((a-b)/(a+b))^(1/2)*a^5-8*cos(d*x+c)*((a-b)/(a+b))^(1/2)*b^5-15*cos(d*x+c)^2*sin(d*x+c)*(1/(a+b)*(b
+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/si
n(d*x+c),(-(a+b)/(a-b))^(1/2))*a^3*b^2+8*cos(d*x+c)^2*sin(d*x+c)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/
2)*(1/(cos(d*x+c)+1))^(1/2)*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a*b
^4-9*cos(d*x+c)^2*sin(d*x+c)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*Elliptic
F((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a^4*b+6*cos(d*x+c)^2*sin(d*x+c)*(1/(a+b
)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2
)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a^3*b^2+3*cos(d*x+c)*sin(d*x+c)*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/
2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*a
^4*b-15*cos(d*x+c)*sin(d*x+c)*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*(
1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*a^2*b^3-12*cos(d*x+c)*sin(d*x+c)*(1/(a
+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1
/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a^4*b-3*cos(d*x+c)*sin(d*x+c)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(
1/2)*(1/(cos(d*x+c)+1))^(1/2)*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a
^3*b^2+14*cos(d*x+c)*sin(d*x+c)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*Ellip
ticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a^2*b^3+8*cos(d*x+c)*sin(d*x+c)*(1/(
a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(
1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a*b^4+8*cos(d*x+c)^2*sin(d*x+c)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1)
)^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2)
)*a^2*b^3-3*((a-b)/(a+b))^(1/2)*cos(d*x+c)^3*a^3*b^2+3*((a-b)/(a+b))^(1/2)*cos(d*x+c)^2*a^4*b-4*((a-b)/(a+b))^
(1/2)*cos(d*x+c)^2*a^2*b^3+3*cos(d*x+c)^3*((a-b)/(a+b))^(1/2)*a^4*b-3*cos(d*x+c)^3*((a-b)/(a+b))^(1/2)*a^2*b^3
+18*cos(d*x+c)^2*((a-b)/(a+b))^(1/2)*a^3*b^2-12*cos(d*x+c)^2*((a-b)/(a+b))^(1/2)*a*b^4-6*cos(d*x+c)*((a-b)/(a+
b))^(1/2)*a^4*b-12*cos(d*x+c)*((a-b)/(a+b))^(1/2)*a^3*b^2+18*cos(d*x+c)*((a-b)/(a+b))^(1/2)*a^2*b^3+8*cos(d*x+
c)*((a-b)/(a+b))^(1/2)*a*b^4-15*cos(d*x+c)*sin(d*x+c)*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c)
,(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*a^3*b^2+8*cos(
d*x+c)*sin(d*x+c)*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a
*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*a*b^4)*((b+a*cos(d*x+c))/cos(d*x+c))^(1/2)/(b+a*co
s(d*x+c))^2/(1/cos(d*x+c))^(1/2)/sin(d*x+c)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac{5}{2}} \sqrt{\sec \left (d x + c\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/sec(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

integrate(1/((b*sec(d*x + c) + a)^(5/2)*sqrt(sec(d*x + c))), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{b \sec \left (d x + c\right ) + a} \sqrt{\sec \left (d x + c\right )}}{b^{3} \sec \left (d x + c\right )^{4} + 3 \, a b^{2} \sec \left (d x + c\right )^{3} + 3 \, a^{2} b \sec \left (d x + c\right )^{2} + a^{3} \sec \left (d x + c\right )}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/sec(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

integral(sqrt(b*sec(d*x + c) + a)*sqrt(sec(d*x + c))/(b^3*sec(d*x + c)^4 + 3*a*b^2*sec(d*x + c)^3 + 3*a^2*b*se
c(d*x + c)^2 + a^3*sec(d*x + c)), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/sec(d*x+c)**(1/2)/(a+b*sec(d*x+c))**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac{5}{2}} \sqrt{\sec \left (d x + c\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/sec(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(5/2),x, algorithm="giac")

[Out]

integrate(1/((b*sec(d*x + c) + a)^(5/2)*sqrt(sec(d*x + c))), x)